Pairing influence in binary nuclear systems

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER

Radu.Gherghescu@nipne.ro

IFIN-HH, Bucharest-Magurele, Romania

and

Frankfurt Institute for Advanced Studies, J W Goethe University Frankfurt am Main, Germany

Symposium on Highlights in Heavy-Ion Physics dedicated to the memory of Nikola Cindro.

Outline

- Deformation space
- Deformed two-center shell model
- Binary macroscopic-microscopic approach
- Pairing corrections
- Mass tensor and dynamics
- Nuclear inertia
- PES, barriers and penetrabilities for synthesis of Z=118 isotopes

Deformation space

- 1. Mass asymmetry: $\eta = (A_T A_P)/(A_T + A_P)$
- 2. Distance between centers: R
- 3. Deformation parameter of the synthesized (parent) nucleus: b_0/a_0
- 4. Deformation parameter of the heavy fragment (Target): b_T/a_T
- 5. Deformation parameter of the light fragment (Pprojectile): b_P/a_P

Deformation space

Deformed two-center oscillator potential

$$V_{DTCSM}(\rho, z) = \begin{cases} V_1(\rho, z) &, v_1 \\ V_{g1}(\rho, z) &, v_{g1} \\ V_{g2}(\rho, z) &, v_{g2} \\ V_2(\rho, z) &, v_2 \end{cases}$$

where:

$$V_{1}(\rho, z) = \frac{1}{2}m_{o}\omega_{\rho_{1}}^{2}\rho^{2} + \frac{1}{2}m_{o}\omega_{z1}^{2}(z + z_{1})^{2}$$

$$V_{g1}(\rho, z) = 2V_{0} - \left[\frac{1}{2}m_{o}\omega_{g}^{2}(\rho - \rho_{3})^{2} + \frac{1}{2}m_{o}\omega_{g}^{2}(z - z_{3})^{2}\right]$$

$$V_{g2}(\rho, z) = V_{0}$$

$$V_{2}(\rho, z) = \frac{1}{2}m_{o}\omega_{\rho_{2}}^{2}\rho^{2} + \frac{1}{2}m_{o}\omega_{z2}^{2}(z - z_{2})^{2}$$

Total Hamiltonian

$$H_{DTCSM} = -\frac{\hbar^2}{2m_0}\Delta + V_{DTCSM}(\rho, z) + V_{\Omega s} + V_{\Omega^2}$$

separable if $\omega_{\rho_1} = \omega_{\rho_2} = \omega_1$ for a potential:

$$V^{(d)}(\rho, z) = \begin{cases} V_1^{(d)}(\rho, z) = \frac{1}{2}m_0\omega_1^2\rho^2 + \frac{1}{2}m_0\omega_1^2(z+z_1)^2 , z \le 0\\ V_2^{(d)}(\rho, z) = \frac{1}{2}m_0\omega_1^2\rho^2 + \frac{1}{2}m_0\omega_2^2(z-z_2)^2 , z \ge 0 \end{cases}$$

Diagonalization basis:

$$\begin{split} \Phi_{m}(\phi) &= \frac{1}{\sqrt{2\pi}} \exp\left(im\phi\right) \\ R_{n_{\rho}}^{|m|}(\rho) &= \left(\frac{2\Gamma(n_{\rho}+1)\alpha_{1}^{2}}{\Gamma(n_{\rho}+|m|+1)}\right)^{\frac{1}{2}} \exp\left(-\frac{\alpha_{1}^{2}\rho^{2}}{2}\right) (\alpha_{1}^{2}\rho^{2})^{\frac{|m|}{2}} L_{n_{\rho}}^{|m|}(\alpha_{1}^{2}\rho^{2}) \\ Z_{\nu}(z) &= \begin{cases} C_{\nu_{1}} \exp\left[-\frac{\alpha_{1}^{2}(z+z_{1})^{2}}{2}\right] \mathcal{H}_{\nu_{1}}[-\alpha_{1}(z+z_{1})] &, z < 0 \\ C_{\nu_{2}} \exp\left[-\frac{\alpha_{2}^{2}(z-z_{2})^{2}}{2}\right] \mathcal{H}_{\nu_{2}}[\alpha_{2}(z-z_{2})] &, z \ge 0 \end{cases}$$

H_{DTCSM} operators

Oscillator operators:

$$\Delta V_1(\rho, z) = V_1(\rho, z) - V^{(d)}(\rho, z) , \boldsymbol{v_1}$$

$$\Delta V_2(\rho, z) = V_2(\rho, z) - V^{(d)}(\rho, z) , \boldsymbol{v_2}$$

$$\Delta V_g(\rho, z) = V_g(\rho, z) , \boldsymbol{v_g}$$

Spin-orbit ls and l^2 potentials:

$$V_{ls} = \begin{cases} -\left\{\frac{\hbar}{m_0\omega_{01}}\kappa_1(\rho,z), (\nabla V \times p)s\right\} &, A_1 - region\\ -\left\{\frac{\hbar}{m_0\omega_{02}}\kappa_2(\rho,z), (\nabla V \times p)s\right\} &, A_2 - region \end{cases}$$

$$V_{l^{2}} = \begin{cases} -\left\{\frac{\hbar}{m_{0}^{2}\omega_{01}^{3}}\kappa_{1}\mu_{1}(\rho,z),(\nabla V \times p)^{2}\right\} , A_{1} - region \\ -\left\{\frac{\hbar}{m_{0}^{2}\omega_{02}^{3}}\kappa_{2}\mu_{2}(\rho,z),(\nabla V \times p)^{2}\right\} , A_{2} - region \end{cases}$$

Spin-orbit ls and l^2 operators

General expression:

$$ls \rightarrow \frac{1}{2}(\mathbf{\Omega}^+\mathbf{s}^- + \mathbf{\Omega}^-\mathbf{s}^+) + \mathbf{\Omega}_z\mathbf{s}_z$$

Shape dependent Ω - operators:

$$\begin{split} \mathbf{\Omega}^{+}(\mathbf{v}_{1}) &= -e^{i\varphi} \left[\frac{\partial V_{1}(\rho,z)}{\partial \rho} \frac{\partial}{\partial z} - \frac{\partial V_{1}(\rho,z)}{\partial z} \frac{\partial}{\partial \rho} - \frac{i}{\rho} \frac{\partial V_{1}(\rho,z)}{\partial z} \frac{\partial}{\partial \varphi} \right] \\ &= -e^{i\varphi} \left[m_{0}\omega_{\rho_{1}}^{2}\rho \frac{\partial}{\partial z} - m_{0}\omega_{z_{1}}^{2}(z+z_{1}) \frac{\partial}{\partial \rho} - \frac{i}{\rho}m_{0}\omega_{z_{1}}^{2}(z+z_{1}) \frac{\partial}{\partial \varphi} \right] \\ \mathbf{\Omega}^{-}(\mathbf{v}_{1}) &= e^{-i\varphi} \left[\frac{\partial V_{1}(\rho,z)}{\partial \rho} \frac{\partial}{\partial z} - \frac{\partial V_{1}(\rho,z)}{\partial z} \frac{\partial}{\partial \rho} + \frac{i}{\rho} \frac{\partial V_{1}(\rho,z)}{\partial z} \frac{\partial}{\partial \varphi} \right] \end{split}$$

$$= e^{-i\varphi} \left[m_0 \omega_{\rho_1}^2 \rho_{\overline{\partial z}}^2 - m_0 \omega_{z_1}^2 (z+z_1) \frac{\partial}{\partial \rho} + \frac{i}{\rho} m_0 \omega_{z_1}^2 (z+z_1) \frac{\partial}{\partial \varphi} \right]$$

$$\begin{aligned} \mathbf{\Omega}_{z}(v_{1}) &= -\frac{i}{\rho} \frac{\partial V_{1}}{\partial \rho} \frac{\partial}{\partial \varphi} \\ &= -im_{0} \omega_{\rho_{1}}^{2} \frac{\partial}{\partial \varphi} \end{aligned}$$

Spin-orbit interaction

Total spin-orbit operators:

$$V_{\Omega s}(v_{1}) = -\frac{\hbar}{m_{0}\omega_{01}}\kappa_{1}\{\Omega s(v_{1}), (v_{1})\}$$

$$V_{\Omega s}(v_{2}) = -\frac{\hbar}{m_{0}\omega_{02}}\kappa_{2}\{\Omega s(v_{2}), (v_{2})\}$$

$$V_{\Omega s}(v_{g}) = -\frac{\hbar}{m_{0}\omega_{01}}\kappa_{1}\{\Omega s(v_{g1}), (v_{g1})\} - \frac{\hbar}{m_{0}\omega_{02}}\kappa_{2}\{\Omega s(v_{g2}), (v_{g2})\}$$

DTCSM matrix

Total matrix elements:

 $\langle i | DTCSM | j \rangle = E_{osc}^{(d)}(n_{\rho}, |m|, \nu) + \langle i | \Delta V_{1} | j \rangle + \langle i | \Delta V_{2} | j \rangle$ + $\langle i | V_{g} | j \rangle + \langle i | V_{\Omega s} | j \rangle + \langle i | V_{\Omega^{2}} | j \rangle$

where $E_{osc}^{(d)}$ is the diagonalized oscillator energy:

$$E_{osc}^{(d)} = \hbar\omega_1(2n_\rho + |m| + 1) + \hbar\omega_1(\nu_1 + 0.5)$$

Diagonalization: one obtains the total binary s.p.s. energy levels $\{\epsilon_k\}$, as input data for the calculation of shell and pairing corrections.

 $\{E_{sp}\} \rightarrow \epsilon_i$: input data to calculate E_{shell} :

Shell corrections

$$\delta u = \sum_{i} \epsilon_{i} - \tilde{U}$$

Smoothing $\Rightarrow \tilde{U}$: (1) smoothed level distribution $\tilde{g}(\epsilon)$:

$$\tilde{g}(\epsilon) = \frac{1}{\gamma} \int_{-\infty}^{\infty} \zeta\left(\frac{\epsilon - \epsilon'}{\gamma}\right) g(\epsilon') d\epsilon' = \frac{1}{\gamma} \sum_{i=1}^{\infty} \zeta\left(\frac{\epsilon - \epsilon_i}{\gamma}\right)$$

where the smoothing function:

$$\zeta(x) = \frac{1}{\sqrt{\pi}} \exp(-x^2) \sum_{k=0}^{m} a_{2k} H_{2k}(x)$$

(2) Then the smoothed part \rightarrow smearing :

$$\tilde{U} = \hbar \omega = \int_{\infty}^{\tilde{\lambda}} \tilde{g}(\epsilon) \epsilon d\epsilon$$

(3) where the smoothed Fermi level comes from N_e conservation.

Pairing interaction

Normaly Z/2 levels are occupied, BUT only n levels bellow and n' levels above the Fermi energy contribute to the pairing interaction. If Ω is the cutoff energy, $n = n' = \Omega \tilde{g_s}/2$ and $\tilde{\Delta} = 12/\sqrt{A}\hbar\omega_0^0$. BCS equations:

$$0 = \sum_{k_i}^{k_f} \frac{\epsilon_k - \lambda}{\sqrt{(\epsilon_k - \lambda)^2 + \Delta^2}}$$

$$\frac{2}{G} = \sum_{k_i}^{k_f} \frac{1}{\sqrt{(\epsilon_k - \lambda)^2 + \Delta^2}}$$

$$k_i = Z/2 - n + 1, \ k_f = Z/2 + n',$$

Suppose the the pairing strength G is the same for uniform distribution:

$$\frac{2}{G} \simeq 2\tilde{g}(\tilde{\lambda}) \ln\left(\frac{2\Omega}{\tilde{\Delta}}\right)$$

Pairing interaction

As a consequence of the pairing correlation, the levels below the Fermi energy are only partially filled, while those above the Fermi energy are partially empty. IF $\{\epsilon_k\}$ are the DTCSM single particle energies, then:

$$v_k^2 = \left[1 - (\epsilon_k - \lambda)/E_k\right]/2$$

and

$$u_k^2 = 1 - v_k^2$$

where the quasi-particle energy is:

$$E_k = \sqrt{(\epsilon_k - \lambda)^2 + \Delta^2}.$$

where λ and Δ are the solutions of the BCS system of equations.

Pairing interaction

The pairing correction:

$$\delta p = p - \tilde{p}$$

represents the difference between the pairing correlation energies for the discrete level distribution:

$$p = \sum_{k=k_i}^{k_f} 2v_k^2 \epsilon_k - 2\sum_{k=k_i}^{Z/2} \epsilon_k - \frac{\Delta^2}{G}$$

and for the continuous level distribution

$$\tilde{p} = -(\tilde{g}\tilde{\Delta^2})/2 = -(\tilde{g}_s\tilde{\Delta^2})/4$$

Compared to shell correction, the pairing correction is out of phase and smaller. One has again $\delta p = \delta p_p + \delta p_n$, and $\delta e = \delta u + \delta p$.

Example: ²³⁶Pu

Shell and pairing corrections for 236 Pu. The s.p.s. were obtained with the two-center shell model.

Macroscopic energy

The macroscopic energy: the sum of Coulomb E_C and Yukawa E_Y :

$$E_C = \frac{2\pi}{3} \rho_e \int_{z_{min}}^{z_{max}} dz \int_{z_{min}}^{z_{max}} dz \prime \cdot F_C(z, z\prime)$$

where $F_C(z, z')$ - shape dependent \rightarrow binary fusion configuration:

$$E_C = \frac{2\pi}{3} \left(\rho_{e1}^2 F_{C1} + \rho_{e2}^2 F_{C2} + 2\rho_{e1}\rho_{e2}F_{C12}\right)$$

where ρ_{e1} and ρ_{e2} are the charge densities, and:

$$E_Y = \frac{1}{4\pi r_0^2} [c_{s1}F_{EY1} + c_{s2}F_{EY2} + 2(c_{s1}c_{s2})^{1/2}F_{EY12}]$$

The total deformation energy: $E_{def} = E_C + E_Y + \delta u + \delta p$ The surface energy constants:

$$c_{si} = a_s(1 - \kappa I_i^2)$$
 where $I_i = (N_{ix} - Z_{ix})/A_{ix}$

Deformation variable evolution

Variation of the semiaxis ratios: $\chi_T = b_T/a_T$ and $\chi_P = b_P/a_P$:

$$\chi_T = \chi_{T0} + (\chi_0 - \chi_{T0}) \exp\left[-\left(\frac{R - R_{k_T}}{R_t - R_f} k_T\right)^2\right]$$
$$\chi_P = \chi_{P0} + (\chi_{Pf} - \chi_{P0}) \exp\left[-\left(\frac{R - R_{k_P}}{R_t - R_f} k_P\right)^2\right]$$
where:

$$\chi_{Pf} = \chi_{P0} - \frac{i_P}{10}(\chi_0 - \chi_{P0})$$

Free variables \rightarrow functions of R :

$$b_P = b_P(k_T, k_P, i_P; R)$$

$$\chi_T = \chi_T(k_T, k_P, i_P; R)$$

$$\chi_P = \chi_P(k_T, k_P, i_P; R)$$

Mass tensor and dynamics

Cranking model \rightarrow Tensor contraction along R:

$$B(R) = B_{b_P b_P} \left(\frac{db_P}{dR}\right)^2 + 2B_{b_P \chi_T} \frac{db_P}{dR} \frac{d\chi_T}{dR} + 2B_{b_P \chi_P} \frac{db_P}{dR} \frac{d\chi_P}{dR} + 2B_{b_P \chi_P} \frac{db_P}{dR} \frac{d\chi_P}{dR} + 2B_{b_P \chi_P} \frac{d\chi_T}{dR} \frac{d\chi_P}{dR} + 2B_{\chi_T \chi_P} \frac{d\chi_T}{dR} \frac{d\chi_P}{dR} + 2B_{\chi_T \chi_P} \frac{d\chi_T}{dR} \frac{d\chi_P}{dR} + 2B_{\chi_T \chi_P} \frac{d\chi_T}{dR} \frac{d\chi_P}{dR} + 2B_{\chi_P \chi_P} \left(\frac{d\chi_P}{dR}\right)^2 + 2B_{\chi_P R} \frac{d\chi_P}{dR} + B_{RR}$$

Penetrability P for a given fusion path (fus):

$$P = \exp(-K_{ov})$$

where

$$K_{ov}(b_P,\kappa_T,\kappa_P;R) = \frac{2}{\hbar} \int_{(fus)} \left[2B(R)_{b_P,\kappa_T,\kappa_P} E_{def}(R)_{b_P,\kappa_T,\kappa_P} \right]^{1/2} dR$$

Cranking mass tensor

Cranking model \rightarrow Tensor contraction along R results in scalar forms:

$$B_{\varepsilon} = 2\hbar^2 \sum_{\nu\mu} \frac{\langle \nu | \partial V_{DTCSM} / \partial \varepsilon | \mu \rangle \langle \mu | \partial V_{DTCSM} / \partial \varepsilon | \nu \rangle}{(E_{\nu} + E_{\mu})^3} (u_{\nu}v_{\mu} + u_{\mu}v_{\nu})^2$$

where:

$$V_{DTCSM} = V_{DTCSM}^{2osc} + V_{ls} + V_{l^2}$$

and the s. p. s. are the DTCSM wave functions.

$$|\mu\rangle = |DTCSM(n_{\rho}, n_z, m|\rho, z, \phi)\rangle$$

Cranking inertia for ²³⁶Pu

PES for $^{290}118$

Isobaric channel cold fusion barriers for ²⁹⁰118

Cold fusion channels for 290 118

Reaction	E_b (MeV)	$log_{10}P$	Reaction	E_b (MeV)	$log_{10}P$
144 Ce+ 146 Nd	4.4	-5.	132 Xe+ 158 Gd	4.57	-4.31
144 Nd $+^{146}$ Ce	4.56	-5.89	132 Te $+^{158}$ Dy	4.98	-4.49
142 Ce $+^{148}$ Nd	4.47	-4.51	130 Xe $+^{160}$ Gd	5.77	-5.19
$^{142}Ba+^{148}Sm$	4.2	-4.52	130 Te $+^{160}$ Dy	5.29	-4.76
140 Ce $+^{150}$ Nd	4.35	-4.91	128 Te $+^{162}$ Dy	4.77	-4.44
$^{140}Ba+^{150}Sm$	4.5	-4.17	128 Xe $+^{162}$ Gd	5.91	-6.27
$^{138}Ba+^{152}Sm$	4.86	-4.42	$^{128}{ m Sn}+^{162}{ m Er}$	5.19	-4.6
138 Xe+ 152 Gd	4.4	-4.04	126 Te $+^{164}$ Dy	5.87	-5.32
$^{136}Ba+^{154}Sm$	4.44	-4.33	126 Sn+ 164 Er	5.48	-4.81
136 Xe $+^{154}$ Gd	4.66	-4.33	124 Sn+ 166 Er	4.96	-4.64
$^{134}Ba+^{156}Sm$	5.58	-5.02	124 Te $+^{166}$ Dy	6.37	-5.68
134 Xe $+^{156}$ Gd	5.13	-4.61	$^{122}{Sn}+^{168}{Er}$	6.12	-5.5
132 Xe+ 158 Gd	4.57	-4.31	122 Cd $+^{168}$ Yb	5.07	-5.39

PES for ²⁸⁶118

Isobaric channel cold fusion barriers for ²⁸⁶118

Cold fusion channels for 286 118

Reaction	E_b (MeV)	$log_{10}P$	Reaction	E_b (MeV)	$log_{10}P$
142 Ce $+^{144}$ Nd	4.3	-3.48	$^{132}Ba+^{154}Sm$	5.6	-5.55
$^{142}Nd+^{144}Ce$	3.85	-3.53	132 Xe+ 154 Gd	4.18	-3.63
140 Ce $+^{146}$ Nd	3.7	-3.7	132 Te $+^{154}$ Dy	3.02	-2.4
$^{140}Nd+^{146}Ce$	4.1	-3.4	$^{130}Ba+^{156}Sm$	5.52	-6.25
$^{140}Ba+^{146}Sm$	4.19	-8.71	130 Xe $+^{156}$ Gd	3.79	-3.18
138 Ce $+^{148}$ Nd	4.06	-3.35	130 Te $+^{156}$ Dy	3.34	-2.71
138 Ba $+^{148}$ Sm	3.54	-2.83	128 Sn+ 158 Er	3.2	-2.56
$^{136}{\sf Ba}{+}^{150}{\sf Sm}$	3.92	-3.39	$^{128}Xe+^{158}Gd$	5.48	-5.82
136 Ce $+^{150}$ Nd	5.54	-4.86	128 Te $+^{158}$ Dy	4.85	-4.22
136 Xe $+^{150}$ Gd	3.37	-2.69	126 Xe $+^{160}$ Gd	5.44	-6.58
$^{134}Ba+^{152}Sm$	4.23	-3.49	126 Te $+^{160}$ Dy	4.02	-3.33
134 Xe $+^{152}$ Gd	3.71	-3.06	126 Sn $+^{160}$ Er	3.51	-2.9

Cold fusion channels for 286 118

Reaction	E_b (MeV)	$log_{10}P$	Reaction	E_b (MeV)	$log_{10}P$
124 Sn+ 162 Er	5.2	-4.55	118 Sn+ 168 Er	4.98	-4.11
124 Te+ 162 Dy	4.44	-3.65	118 Cd $+^{168}$ Yb	4.37	-3.6
122 Te $+^{164}$ Dy	4.82	-3.93	116 Sn $+^{170}$ Er	5.42	-4.5
$^{122}{ m Sn}{+}^{164}{ m Er}$	4.27	-3.47	116 Cd $+^{170}$ Yb	4.8	-3.93
120 Te $+^{166}$ Dy	5.14	-4.28	116 Pd $+^{170}$ Hf	5.08	-4.6
120 Sn+ 166 Er	4.59	-3.75	114 Sn $+^{172}$ Er	5.87	-5.27

PES for 280 118

Cold fusion barriers for ²⁸⁰118

Cold fusion barriers for ²⁸⁰118

Isobaric channel cold fusion channels for ²⁸⁰118

Cold fusion channels for $^{\rm 280}118$

Reaction	E_b (MeV)	$log_{10}P$	Reaction	E_b (MeV)	$log_{10}P$
138 Nd $+^{142}$ Ce	1.48	-5.22	130 Ce $+^{150}$ Nd	4.07	-4.32
138 Ce $+^{142}$ Nd	0.95	-3.94	$^{130}{\sf Ba}{+}^{150}{\sf Sm}$	3.34	-3.28
138 Ba+ 142 Sm	0.39	-0.59	130 Xe $+^{150}$ Gd	3.71	-7.87
136 Ce $+^{144}$ Nd	3.81	-3.31	$^{128}Ba+^{152}Sm$	3.8	-3.7
$^{136}Ba+^{144}Sm$	1.61	-1.91	128 Xe $+^{152}$ Gd	2.82	-3.
134 Ce $+^{146}$ Nd	3.54	-3.56	$^{126}Ba+^{154}Sm$	4.28	-4.34
$^{134}Ba+^{146}Sm$	1.2	-2.4	126 Xe $+^{154}$ Gd	3.29	-3.32
134 Xe+ 146 Gd	0.81	-0.77	126 Te $+^{154}$ Dy	3.24	-6.72
132 Ce $+^{148}$ Nd	3.9	-3.81	124 Xe $+^{156}$ Gd	3.67	-3.79
$^{132}Ba+^{148}Sm$	2.88	-3.09	124 Te $+^{156}$ Dy	2.01	-1.9
132 Xe+ 148 Gd	1.69	-1.58	124 Sn+ 156 Er	1.17	-1.15

Cold fusion channels for $^{\rm 280}118$

Reaction	E_b (MeV)	$log_{10}P$	Reaction	E_b (MeV)	$log_{10}P$
122 Xe+ 158 Gd	4.18	-4.38	118 Te $+^{162}$ Dy	2.95	-2.83
122 Te $+^{158}$ Dy	1.9	-1.75	118 Sn+ 162 Er	2.32	-2.07
122 Sn+ 158 Er	1.32	-1.31	118 Cd+ 162 Yb	1.68	-1.57
120 Xe $+^{160}$ Gd	4.63	-5.37	116 Sn+ 164 Er	2.66	-2.53
120 Te $+^{160}$ Dy	3.13	-3.43	116 Cd $+^{164}$ Yb	1.99	-2.04
120 Sn+ 160 Er	1.31	-1.86			

Possible conclusions

- A specialized binary macroscopic-microscopic model is applied to calculate the deformation energy.
- Cranking mass tensor and multidimensional minimization of action integral is used to obtain WKB penetrabilities.
- For 294 **118**: 136 Te+ 158 Dy $\rightarrow logP$ =-5.97 126 Sn+ 168 Er $\rightarrow logP$ =-6.55

For ²⁹⁰118:
¹⁴⁰Ba+¹⁵⁰Sm
$$\rightarrow logP$$
=-4.17
¹²⁸Te+¹⁶²Dy $\rightarrow logP$ =-4.44
¹¹⁶Pd+¹⁷⁴Hf $\rightarrow logP$ =-4.6

For ²⁸⁶118:
¹³⁸Ba+¹⁴⁸Sm →
$$logP$$
=-2.83
¹³²Te+¹⁵⁴Dy → $logP$ =-2.4
¹²⁶Pd+¹⁶⁰Hf → $logP$ =-2.9

For ²⁸⁰118: ¹³⁸Ba+¹⁴²Sm $\rightarrow logP$ =-0.59 ¹³⁴Xe+¹⁴⁶Gd $\rightarrow logP$ =-0.77 ¹²⁴Sn+¹⁵⁶Er $\rightarrow logP$ =-1.15 ¹²²Sn+¹⁵⁸Er $\rightarrow logP$ =-1.31