

FOPI and the Physics of Strangeness

Olaf N. Hartmann Austrian Academy of Sciences, Vienna

Symposium "Highlights in Heavy Ion Physics" Split, 22.+23.09.2011

Der Wissenschaftsfonds.

Contents

- The Heavy Ion Synchrotron SIS at the GSI
- The FOPI Detector
- Strangeness Production
 - Heavy ion collions (dense baryonic matter)
 - Proton+proton collisions
 - Pion induced reactions
- Future Plans
- Conclusions

SIS – Schwerionen-Synchrotron

216 m circumference18 Tm bending power

Beams at the SIS: lons (Li – U) \leq 2 GeV/u (A/q=2) Protons \leq 4.5 GeV Pions \leq 2.8 GeV/c

- Accelerator physics
- Atomic physics
- Nuclear physics
- Bio physics
- Plasma physics
- Material research
- Theory

The FOPI Detector

NIPNE Bucharest, KFKI Budapest, LPC Clermont-Ferrand, GSI Darmstadt, FZ Dresden-Rossendorf, University Heidelberg, ITEP Moscow, KI Moscow, TU Munich, Korea U Seoul, IReS Strasbourg, University Warsaw, SMI Vienna, RBI Zagreb

Particle Identification

Event Display Central Drift Chamber (x,y) plane Ni+Ni@1.93 AGeV

> PID: Matched tracks CDC-RPC

kp_rpc_pid_1808_3239_ml0_mh100_060510_dstAB^{010/05/16_01.53}

Forward Detectors Helitron+ Plastic Wall

Reconstruction of neutral particles like Λ , K^0_s from their charged decay products

The RPC Time-of-Flight Barrel

(FOPI Phase III)

Multigap-Multistrip RPC $\sigma(RPC)$: 67 ps $\sigma(system)$: ca. 90 ps

Charged Kaon Identification

Why Strangeness?

Modification of Particle **Properties in Medium** (density and temperature dependent)

Σ^{*}(1385) Λ^{*}(1405) poles 1500 ** _____ ^*(1520) 1000 $\Lambda(1116) \Sigma(1195)$ [MeV] Λπ Σπ Δη Ση **KN-threshold** Complicated Situation due to the presence of resonances

Strong attractive Interaction of the Antikaon in the Medium

- Flow
- Bound States

Systems studied by FOPI 2003-2011

- Heavy Ion Reactions
 K⁰, K[±], Λ, φ, K^{*}, Σ^{*}
 Ni+Ni (1.93 and 1.91 AGeV), Al+Al (1.91 AGeV),
 Ni+Pb (1.91 AGeV), Ru+Ru (1.69 AGeV)
- Pion Induced Reactions
 K⁰, K[±], Λ, φ
 π⁻ + C, Al, Cu, Sn, Pb (1.15 GeV/c, 1.7 GeV/c)
- Proton+proton 3.1 GeV search for ppK⁻ bound state

Charged Kaon Yields

K. Wisniewski et al., EPJA9(2000)

Yield ratio varies of the studied region of phase space

→ in-medium modifications of charged Kaon properties? Comparison to transport Models (RBUU, filtered)

 \rightarrow non-zero in-medium potentials suggested

Charged Kaon Flow

Looking to Flow in terms of v_1 and v_2

$$\frac{dN}{d\phi} \propto 1 + v_1 \cos \phi + v_2 \cos 2\phi$$

Sideward Flow (v_1) of K⁺ -1.2< Y⁰ < -0.6 low $p_t \rightarrow$ anti-flow

 $\sigma_{geo}{\approx}200mb$

Comparison to transport model (filtered): In-medium repulsive potential of 20 MeV

but: Proton flow not consistently described

K⁻ not available at this time

Charged Kaon Flow Updated

T.I. Kang, V. Zinyuk (Heidelberg)

Data consistent with previous ones

Ni+Ni. 1.91 AGeV (S325, S325e)

Transport models (filtered) Potentials at $\rho = \rho_0$: HSD: U(K⁺)=20 MeV, U(K⁻)=50 MeV IQMD: U(K⁺)=40 MeV, U(K⁻)=90 MeV

Small sideflow of K⁺ Vanishing K⁻ sideflow

K⁺ elliptic flow <0 (out of plane) K⁻ sideflow consitent with zero

Short lived Strange Resonances

 $\Sigma^* \rightarrow \Lambda + \pi (88\pm 2\%)$ $\Gamma = 39.4$ MeV, $c\tau = 5$ fm NN-threshold 2.33 GeV $K^* \rightarrow K + \pi$ $\Gamma = 50.7 \text{ MeV}, c\tau = 4 \text{ fm}$ NN-threshold 2.75 GeV

Al+Al 1.92 AGeV, 5.108 events, P_{det}~10⁻⁵

Reconstructable consistent with PDG values

Strange Baryon Clusters

Search for ppK⁻ in p+p

R. Münzer, München

LH2 target + SIAVIO (silicon strip detectors)

Analysis still in progress

- Λ reconstruction
- K⁺ identification
- Ap correlation
- K⁺ missing mass

Suppression of non-strange background by factor 20 (simulation with UrQMD)

Light Hypernuclei

Y.P. Zhang (Heidelberg)

3-body decay and heavier hypernuclei under study

yields (ratios) not understood so far ...

Pion Induced Reactions

inclusive cross sections

Comparison to HSD \rightarrow repulsive Potential of ~ 20 MeV $\pi^- \mathbf{p} \to \mathbf{K}^0 \Lambda$

dashed: $\rho = \rho_0$

Pion Induced Reactions

100

1.08

1.1

1.12 1.14 1.16 1.18

calibration and analysis ongoing

Special feature of this experiment: first use of a GEM-TPC

1.22 1.24 1.26

M_{inv}(p,π⁻)(GeV)

1.2

GEM-TPC

M. Berger, München

TPC as upgrade for FOPI:

- Vertex resolution: ~1 mm in X,Y + Z
- Larger geometrical acceptance for:
 - Λ and K^{0}_{s}
- Improved resolution of secondary vertices (min factor 10)
- \rightarrow good for weakly decaying resonances

Future Plans

- The June 2011 pion beam experiment was the last official FOPI beamtime
- Replace/extend hardware with components for FAIR experiments (CBM, PANDA)
- Exploit improved resolution: GEM-TPC
- Physics case: double strangeness production (Ξ⁻X, K⁻K⁻X)
 - Pion beam
 - ³He beam

Conclusions

- FOPI@SIS since > 20 years
- New hardware (RPC, SIAVIO, GEM-TPC, ...)
- Measurement of reactions involving strangeness
- New results on charged kaon flow, associated strangeness production, bound states including hypernuclei
 - Still many open questions, theoretical effort needed
- Ongoing analysis (e.g. φ/K⁺K⁻ production in medium)