Electron Screening in Nickel

Matej Lipoglavšek

Jožef Stefan Institute, Ljubljana, Slovenia

Split, September 2011

Electron Screening

Due to Coulomb repulsion the cross section σ for charged particle induced nuclear reactions drops rapidly with decreasing beam energy.

$$\boldsymbol{S}(E) = \frac{S(E)}{E} e^{-2\rho h},$$

where $\eta = Z_1 Z_2 e^2 / 4\pi \epsilon_0 \hbar \sqrt{(2E/\mu)}$ is the Sommerfeld parameter.

Cross section increases at low energies when the interacting nuclei are not bare.

$$f(E) = \frac{\mathcal{S}(E + U_e)}{\mathcal{S}(E)}$$

where U_e is the screeening potential.

for d(d,p)t reaction from F. Raiola et al., Eur. Phys. J. A19 (2004) 283.

Material	U_e	Solubility	$n_{\rm eff}$ (b)	n_{eff} (Hall) ^(d)
	(eV) ^(b)	$1/x^{(c)}$		
		Motels		
Bo	180 ± 40	0.08	0.2±0.1	(0.21 ± 0.04)
Ma	180±40	0.08	0.2 ± 0.1 3.0 ±0.5	(0.21±0.04)
Al	520 ± 50	0.26	3.0±0.6	31 ± 0.6
v	480 ± 60	0.04	2.1 ± 0.5	(1.1 ± 0.2)
Ċr.	320 ± 70	0.15	0.8 ± 0.4	(0.20 ± 0.04)
Mn	390 ± 50	0.12	1.2 ± 0.3	(0.8±0.2)
Fe	460 ± 60	0.06	1.2 ± 0.3 1.7 ± 0.4	(3.0 ± 0.6)
Co	640 ± 70	0.00	3.1 ± 0.7	(1.7 ± 0.3)
Ni	380 ± 40	0.13	1.1 ± 0.2	1.1+0.2
Cu	470 ± 50	0.09	1.8 ± 0.4	1.5 ± 0.3
Zn	480 ± 50	0.13	2.4 ± 0.5	(1.5 ± 0.3)
Sr	210 ± 30	0.27	1.7 ± 0.5	(1.0±0.0)
Nb	470 ± 60	0.13	2.7 ± 0.7	(1.3 ± 0.3)
Mo	420 ± 50	0.12	1.9 ± 0.5	(0.8 ± 0.2)
Ru	215 ± 30	0.18	0.4 ± 0.1	(0.4 ± 0.1)
Rh	230 ± 40	0.09	0.5 ± 0.2	(1.7 ± 0.4)
Pd	800 ± 90	0.03	6.3 ± 1.3	1.1 ± 0.2
Ag	330 ± 40	0.14	1.3 ± 0.3	1.2 ± 0.3
Cď	360 ± 40	0.18	1.9 ± 0.4	(2.5 ± 0.5)
In	520 ± 50	0.02	4.8 ± 0.9	
Sn	130 ± 20	0.08	0.3 ± 0.1	
Sb	720 ± 70	0.13	11 ± 2	
Ba	490 ± 70	0.21	9.9 ± 2.9	
Ta	270 ± 30	0.13	0.9 ± 0.2	(1.1 ± 0.2)
W	250 ± 30	0.29	0.7 ± 0.2	(0.8 ± 0.2)
Re	230 ± 30	0.14	0.5 ± 0.1	(0.3 ± 0.1)
Ir	200 ± 40	0.23	0.4 ± 0.2	(2.2 ± 0.5)
Pt	670 ± 50	0.06	4.6 ± 0.7	3.9 ± 0.8
Au	280 ± 50	0.18	0.9 ± 0.3	1.5 ± 0.3
Tl	550 ± 90	0.01	5.8 ± 1.2	(7.4 ± 1.5)
Pb	480 ± 50	0.04	4.3 ± 0.9	
Bi	540 ± 60	0.12	6.9 ± 1.5	

J. Kasagi, Prog. Theo. Phys. Suppl. 154 (2004) 365

for the d(d,p)t reaction U_e=310±30 eV @ 7% H/Pd

=> concentration dependence

J. Cruz et al., Phys. Lett. B 624 (2005) 181.

For PdLi_{1%}:

S(E)=0.055+0.21E-0.31E² [MeV b]

 $U_e=3.8 \text{ keV}$

K. U. Kettner et al., J. Phys. G **32** (2006) 489.

⁵⁰V(p,n)⁵⁰Cr reaction in different environments: VO₂ insulator, V metal and PdV_{10%} alloy. Relative to the insulator, metal and alloy showed a large screening potential of $U_e = 27$ and 34 keV.

¹⁷⁶Lu(p,n)¹⁷⁶Hf reaction in Lu₂O₃ insulator, Lu metal and PdLu_{10%} alloy; there is a narrow resonance and a shift in proton resonance energy of $U_e = 32$ and 33 keV for the metal and alloy, respectively, relative to the insulator.

 $\Rightarrow U_e \propto Z$

Measurements @ JSI

2 MV Tandem van de Graaf accelerator Reaction: ¹H(⁷Li,α)⁴He

targets: Kapton (insulator), Pd, Pd₇₇Ag₂₃ (metals)

Hall Coefficient in PdAg Alloys

 $R_{\rm H}({\rm Pd}) = -7 \cdot 10^{-11} {\rm m}^3 {\rm /As}$ $R_{\rm H}({\rm Pd}_{50}{\rm Ag}_{50}) = -35 \cdot 10^{-11} {\rm m}^3 {\rm /As}$

 $\left|\mathbf{R}_{\mathrm{H}}\right| \mathbf{\mu} \; \frac{1}{n_{eff}}$

Phys. Rev. B 45 (1992) 10886.

α-particle spectra

on Kapton @ 340 keV Li beam energy

on Pd with 43% H @ 1.05 MeV Li beam energy

Hydrogen Concentration

Elastic Recoil Detection Analysis (ERDA) @ 4.3 MeV Li-7 beam

Elastically scattered protons

Kapton ERDA

Simulated using SIMNRA, M. Mayer, Nucl. Instr. Meth. Phys. Res., **B194**, 177 (2002) Cross sections from Z. Siketic et al., Nucl. Instr. Meth. Phys. Res., **B229**, 180 (2005)

Pd₇₅Ag₂₅ ERDA

Surface peak due to hydrogen dynamics

Pd ERDA

After heating at 900°C for 15 minutes in vacuum and soaking in H_2 at 1 bar for 2 hours at room temperature

Thick Target Yields

α-particle yield calculation: $N_a = 2N_{Li} \frac{rN_A}{M} \bigcup_{E_0}^0 WW \frac{S(E)}{dE_{Li}/dx} dE_{Li}$

 dE_{Li}/dx stopping power Ω efficiency *W* ang. distribution

Reaction: ${}^{1}H({}^{7}Li,\alpha){}^{4}He$

Enhancement Factors

 $f=N_{\alpha}(measured)/N_{\alpha}(U_{e}=0)$

Screening: $\sigma(E) \rightarrow \sigma(E+U_e)$

Kapton: U_e<0.6 keV

Pd: U_e<0.4 keV

Pd₇₇Ag₂₃: U_e<0.7 keV

Results with stretching

Targets, thicknesses, pressures and screening potentials

Target	d[µm]	H/M	p[MPa]	U _e [keV]
Pd ₇₇ Ag ₂₃	125	0.562(5)	340	2.0 ± 0.3
Pd ₇₇ Ag ₂₃	250	0.559(5)	170	2.1 ± 0.2
Pd ₇₇ Ag ₂₃	250	0.599(5)	0	< 0.4
Pd	250	0.532(5)	170	$1.9{\pm}0.2$

M. Lipoglavsek et al., Eur. Phys. J. A44, 71 (2010).

Possible explanation

face centered cubic lattice

Octahedral position

stretching

Tetrahedral position

¹H NMR lineshapes measured by Hahn echo at $v_0 = 100$ MHz of a 250 μ m thick Pd foil.

Electron screening in aluminum

(p, γ), (p,p' γ) and (p,n γ) reactions were studied on natural Ni and Al in metals, Pd₉₀Ni₁₀ alloy and NiO and Al₂O₃ insulators.

Characteristic γ rays were measured by a Ge detector: 1784 keV γ ray from ²⁷Al(p, γ)²⁸Si reaction

Nickel

3 γ rays from ⁵⁸Ni(p, γ)⁵⁹Cu reaction

Nickel

1454 keV γ ray from ⁵⁸Ni(p,p' γ)⁵⁸Ni reaction

- No shift in resonance energy
- No difference in resonance strength

⁶⁴Ni(p,n)⁶⁴Cu reaction

 E_{γ} =159 keV, very preliminary results

Conclusions

- Electron screening in metals depends on H placement in the crystal
- No large screening in slow compound nucleus reactions, (p,γ) and $(p,p'\gamma)$ resonances
- At high Z only (p,n) reactions possibly show a large electron screening effect (to be confirmed) \rightarrow time scale of screening
- **n** Possible differences in β decay of copper isotopes