From heavy ion resonances to Standard Model tests: a lifetime in subatomic physics of an apprentice of Nikola Cindro

Dinko Počanić

University of Virginia

Highlights in HI Physics Nikola Cindro Symposium Split, Croatia, 22–24 Sept. 2011

D. Počanić (UVa)

Outline

Early days: neutron physics, HI resonances; switch to ME physics

Rare pion and muon decays

Pion beta decay: $\pi^+ \rightarrow \pi^0 e^+ \nu$

Radiative pion e2 decay: $\pi^+ \to e^+ \nu \gamma$

Radiative muon decay: $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu \gamma$

The PEN Experiment: $\pi^+ \rightarrow e^+ \nu$

Precision n beta decay program at SNS Summary

D. Počanić (UVa)

Neutron physics

Early days as Nikola's student: neutron physics

- 1973–1976 Undergraduate student with scholarship from Laboratory for Nuclear Structure (LNS), Institute Rudjer Bošković.
- Summer of 1975, summer and fall 1976, worked on research project in neutron-induced reactions (n,p), (n,pn), (n,2n) ...
- December 1976 completed and defended Diploma (BSc) thesis on "Inclusion of preequilibrium emission into the evaporation code NUKRE for neutron-induced reactions"
- January 1977, joined LNS, started graduate school in Nuclear Physics, University of Zagreb.

D. Počanić (UVa)

Quasimolecular resonances in HI; OCM

MSc and PhD work with Nikola Cindro on "quasimolecular resonances" (QMR) in heavy ion collisions.

In 1978-79 developed the Orbiting Cluster Model (OCM) of QMR:

postulate simple nature: orbiting touching spheres, in the entrance channel:

$$E_J = \frac{\hbar}{2\,\mathcal{I}_{\rm OC}}J(J+1)$$

- observability governed by small spreading width Г↓; phenomenologically parametrized.
- Experimental searches for QMR in: ⁹Be+^{12,13}C, ¹²C+²⁴Mg (Demokritos), ¹⁴C+¹⁴C, ²⁸Si+^{24,26}Mg (LANL), ¹⁶O+¹⁶O (Stanford), ²⁸Si+³²S (Strasbourg).
- MSc in 1980; DSc in 1981, with N.C.

D. Počanić (UVa)

1984–1995: Transition to medium energy physics

1984–1987: Nuclear excitations and properties with intermediate energy probes (postdoc at Stanford U.)

- ▶ (n,p) at 118 and 65 MeV (isovector GT GR; IUCF, UC Davis)
- (e,e'p) on light nuclei in the GR region (MIT Bates)
- (π^{\pm}, π^{0}) on light and medium heavy nuclei (LAMPF)
- nucleon pair emission in μ^- capture in light nuclei (SIN/PSI)

1988-present: Shift to fundamental interactions, symmetries, hadron properties, SM tests (after arrival at UVa)

- ▶ threshold $\pi^+ p \rightarrow \pi^+ \pi^0 p$ (π - π scatt. length; χ symm; LAMPF)
- $\pi^- p \rightarrow \pi^0 n$ low energy angular distributions (LAMPF)
- series of e⁻ DIS nucleon spin structure experiments: (E143, E155, E155x at SLAC; RSS, SANE, CLAS at CEBAF)
- ▶ program of rare π and μ decays (PIBETA and PEN at PSI)

Rare π, μ decays Cecil Powell's emulsion tracks

Cecil Powell et al., 1947 discovery of pion in emulsions

D. Počanić (UVa)

Known and measured pion and muon decays

The PIBETA-PEN Program of Measurements

1st phase: The PIBETA expt.: Runs: 1999-2001; 2004

 $\blacktriangleright \pi^+ \to \pi^0 e^+ \nu_e$

o SM checks related to CKM unitarity

• $\pi^+ \rightarrow e^+ \nu_e \gamma (\text{or } e^+ e^-)$

• F_A/F_V , π polarizability (χ PT calibration) • tensor coupling besides V - A (?)

• $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma (\text{or } e^+ e^-)$

o departures from $\boldsymbol{V}-\boldsymbol{A}$ in $\boldsymbol{\mathcal{L}}_{weak}$

2nd phase: The PEN expt. Since 2006 - ongoing

• $\pi^+ \rightarrow e^+ \nu_e$

 $\circ \mathbf{e}$ - μ universality

o pseudoscalar coupling besides $\mathbf{V} - \mathbf{A}$

o ν sector anomalies, Majoron searches, $\mathbf{m_{h+}}$, PS I-q's, V I-q's, . . .

D. Počanić (UVa)

The PIBETA/PEN Apparatus

stopped π^+ beam active target counter 240-det. Csl calorimeter central tracking digitized waveforms stable temp./humidity

PIBETA Detector Assembly (1998)

D. Počanić (UVa)

PIBETA Detector on Platform (1998)

Pion beta decay

Pion Beta Decay: $\pi^+ ightarrow \pi^0 e^+ u$

1999–2001 data set

D. Počanić (UVa)

From HI resonances to SM tests

Cindro Symp 2011 12 / 43

Quark-Lepton (Cabibbo) Universality

The basic weak-interaction V-A form (e.g., μ decay):

$$\mathcal{M} \propto \langle \mathsf{e} | \mathsf{I}^lpha |
u_\mathsf{e}
angle o ar{\mathsf{u}}_\mathsf{e} \gamma^lpha (1-\gamma_5) \mathsf{u}_
u$$

is replicated in hadronic weak decays

 $\mathcal{M} \propto \langle \mathbf{p} | \mathbf{h}^{\alpha} | \mathbf{n} \rangle \rightarrow \bar{\mathbf{u}}_{\mathbf{n}} \gamma^{\alpha} (\mathbf{G}_{\mathbf{V}} - \mathbf{G}_{\mathbf{A}} \gamma_5) \mathbf{u}_{\mathbf{n}}$ with $\mathbf{G}_{\mathbf{V},\mathbf{A}} \simeq 1$.

Departure from $G_V = 1$ (CVC) comes from weak quark (Cabibbo) mixing: $G_V = G_\mu \cos \theta_C (= G_\mu V_{ud}) \cos \theta_C \simeq 0.97$

3 **q** generations lead to the $\begin{pmatrix} \mathbf{v}_{ud} & \mathbf{v}_{us} & \mathbf{v}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{uu} & \mathbf{V}_{u} & \mathbf{V}_{u} \end{pmatrix}$ Cabibbo-Kobayashi-Maskawa (CKM) matrix (1973):

CKM unitarity cond.: $\Delta V^2 = 1 - (|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2) \stackrel{?}{=} 0$, stringently tests the SM.

D. Počanić (UVa)

Online " $\pi\beta$ " Energy Spectrum:

True $\pi\beta$ events buried deep under overwhelming background!

D. Počanić (UVa)

PIBETA result for π_{β} decay [D.P. et al., PRL 93, 181803 (2004)]

 $B_{\pi\beta}^{\text{exp-t}} = [1.040 \pm 0.004 \,(\text{stat}) \pm 0.004 \,(\text{syst})] \times 10^{-8}$,

 $B_{\pieta}^{ ext{exp-e}} = [1.036 \pm 0.004 \, (ext{stat}) \pm 0.004 \, (ext{syst}) \pm 0.003 \, (\pi_{ ext{e2}})] imes 10^{-8} \, ,$

McFarlane et al. [PRD 1985]: $B = (1.026 \pm 0.039) \times 10^{-8}$

SM Prediction (PDG): $B = 1.038 - 1.041 \times 10^{-8}$ (90% C.L.) $(1.005 - 1.007 \times 10^{-8}$ excl. rad. corr.)

D. Počanić (UVa)

From HI resonances to SM tests

Cindro Symp 2011 16 / 43

Radiative pion decay:

 $\pi^+ \rightarrow e^+ \nu \gamma$

1999-2001 & 2004 data sets

D. Počanić (UVa)

From HI resonances to SM tests

Cindro Symp 2011 17 / 43

A tensor interaction, too?

From HI resonances to SM tests

π

The $\pi \rightarrow e\nu\gamma$ amplitude and FF's The IB amplitude (QED):

$$M_{IB} = -i rac{e G_F V_{ud}}{\sqrt{2}} f_\pi m_e \epsilon^{\mu *} ar{e} \left(rac{k_\mu}{kq} - rac{p_\mu}{pq} + rac{\sigma_{\mu
u} q^
u}{2kq}
ight) imes (1 - \gamma_5) \,
u \, .$$

The structure-dependent amplitude:

$$M_{SD} = \frac{eG_F V_{ud}}{m_{\pi}\sqrt{2}} \epsilon^{\nu*} \bar{e} \gamma^{\mu} (1-\gamma_5) \nu \times \left[F_V \epsilon_{\mu\nu\sigma\tau} p^{\sigma} q^{\tau} + i F_A (g_{\mu\nu} p q - p_{\nu} q_{\mu}) \right] \,.$$

The SM branching ratio ($\gamma \equiv F_A/F_V$; $x = 2E_{\gamma}/m_{\pi}$; $y = 2E_e/m_{\pi}$),

$$\begin{aligned} \frac{d\Gamma_{\pi e 2\gamma}}{dx \, dy} &= \frac{\alpha}{2\pi} \Gamma_{\pi e 2} \Big\{ IB\left(x, y\right) + \left(\frac{F_V m_\pi^2}{2f_\pi m_e}\right)^2 \\ &\times \left[\left(1 + \gamma\right)^2 \mathbf{SD^+}\left(x, y\right) + \left(1 - \gamma\right)^2 SD^-\left(x, y\right)\right] \\ &+ \left(\frac{F_V m_\pi}{f_\pi}\right) \left[\left(1 + \gamma\right) S_{\text{int}}^+\left(x, y\right) + \left(1 - \gamma\right) S_{\text{int}}^-\left(x, y\right)\right] \Big\}. \end{aligned}$$

D. Počanić (UVa)

Available data on pion form factors

$$|\mathsf{F}_{\mathsf{V}}| \stackrel{\mathrm{cvc}}{=} rac{1}{lpha} \sqrt{rac{2\hbar}{\pi au_{\pi^0} \mathbf{m}_{\pi}}} = 0.0259(9) \; .$$

$\textbf{F}_{\textbf{A}}\times 10^{4}$	reference	note
$egin{array}{c} 106 \pm 60 \ 135 \pm 16 \ 60 \pm 30 \ 110 \pm 30 \end{array}$	Bolotov et al. (1990) Bay et al. (1986) Piilonen et al. (1986) Stetz et al. (1979)	$(F_T=-56\pm17)$
$\textbf{116} \pm \textbf{16}$	world average (PDG 200)4)

D. Počanić (UVa)

Radiative pion decay Motivation

Best values of pion Form Factor Parameters: Combined analysis of 1999-2001 and 2004 data sets

> M. Bychkov, et al., PRL **103** (2009) 051802.

Radiative pion decay Motivation

Experimental History of Pion F_A and F_V

Summary of pion form factor and B.R. results

$F_V = 0.0258 \pm 0.0017$	(14×)		
$\textbf{F}_{\textbf{A}} = \textbf{0.0119} \pm \textbf{0.0001}_{(F_{V} \equiv F_{V}^{CVC})}^{\text{exp}}$	(16×)		
$a = 0.10 \pm 0.06$ ($q_{e\nu}^2$ dep. of F_V)	(∞)		
$-5.2 imes 10^{-4} < F_T < 4.0 imes 10^{-4}$	90 % C.L.		
Derived pion polarizability and π^{0} lifetime (at L.O.):			
$lpha_{ extsf{E}}=-eta_{ extsf{M}}=$ (2.783 \pm 0.023 $_{ extsf{exp}}$) $ imes$ 10^{-4} fm 3			
$\tau_{-0} = (8.5 \pm 1.1) \times 10^{-17} \text{ s}$	rg: 8.4(4)		
PrimEx PRL '10	D: 7.82 (22)		

 $\mathsf{B}_{\pi_{\mathrm{e}2\gamma}}(\mathsf{E}_{\gamma}>10\,\mathrm{MeV}, heta_{\mathrm{e}\gamma}>40^{\circ})=73.86(54) imes10^{-8}~(17 imes)$

Above results will be improved with new PEN data and analysis.

D. Počanić (UVa)

Radiative muon decay $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu \gamma$

Radiative muon decay:

 $\mu^+
ightarrow {
m e}^+
u_{
m e} ar{
u}_{\mu} \gamma$

2004 data set

D. Počanić (UVa)

From HI resonances to SM tests

Cindro Symp 2011 24 / 43

Michel parameters of muon decay: $\mu
ightarrow {f e}
u_\mu ar
u_{f e}$

$$\begin{aligned} \frac{d^2\Gamma}{dx \ d(\cos\theta)} &= \frac{m_{\mu}}{4\pi^3} W_{e\mu}^4 G_F^2 \sqrt{x^2 - x_0^2} \times \\ & \times \left[\mathbf{F}_{\mathbf{IS}}(x) + P_{\mu^+} \cos\theta \, \mathbf{F}_{\mathbf{AS}}(x) \right] \left[1 + \vec{P}_{e^+}(x,\theta) \cdot \hat{\zeta} \right] \end{aligned}$$

Isotropic part:

$$\mathbf{F}_{\mathsf{IS}}(x) = x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \frac{\eta}{7}x_0(1-x)$$

Anisotropic part:

$$\mathbf{F}_{AS}(x) = \frac{1}{3} \xi \sqrt{x^2 - x_0^2} \left(1 - x + \frac{2}{3} \delta \left[4x - 3 + \left(\sqrt{1 - x_0^2} - 1 \right) \right] \right)$$

D. Počanić (UVa)

Michel parameters of radiative muon decay: $\mu
ightarrow {f e}
u_\mu ar
u_{f e} \gamma$

$$\frac{d^3B(x,y,\theta)}{dx\,dy\,2\pi\,d(\cos\theta)} = f_1(x,y,\theta) + \overline{\eta}f_2(x,y,\theta) + (1-\frac{4}{3}\rho)f_3(x,y,\theta)$$

$$\begin{split} \rho &= \frac{3}{4} - \frac{3}{4} \Big[|g_{LR}^V|^2 + |g_{RL}^V|^2 + 2|g_{LR}^T|^2 + 2|g_{RL}^T|^2 \\ &+ \Re (g_{RL}^S g_{RL}^{T*} + g_{LR}^S g_{LR}^{T*}) \Big] \quad \stackrel{\text{SM}}{=} \quad \frac{3}{4} \,, \end{split}$$

$$\begin{split} \overline{\pmb{\eta}} &= \left(|g_{RL}^{V}|^{2} + |g_{LR}^{V}|^{2} \right) + \frac{1}{8} \left(|g_{LR}^{S} + 2g_{LR}^{T}|^{2} + |g_{RL}^{S} + 2g_{RL}^{T}|^{2} \right) \\ &+ 2 \left(|g_{LR}^{T}|^{2} + |g_{RL}^{T}|^{2} \right) \stackrel{\text{SM}}{\equiv} \mathbf{0} \,. \end{split}$$

D. Počanić (UVa)

D. Počanić (UVa)

Radiative muon decay Michel theory of RMD

 $\Rightarrow \bar{\eta} \le 0.033; \text{ new world average: } \bar{\eta} \le 0.028 \text{ (68 \% c.l.)}$ reduced by a factor of 2.5.

D. Počanić (UVa)

The PEN Experiment:

 $\pi^+
ightarrow {
m e}^+
u$

Ongoing since 2006

D. Počanić (UVa)

From HI resonances to SM tests

Cindro Symp 2011 29 / 43

The PEN Experiment $\pi^+ \rightarrow e^+ \nu$

 $\pi
ightarrow {f e}
u$ decay: SM calculations; measurements

Modern theoretical calculations: $B_{calc} = \frac{\Gamma(\pi \to e\bar{\nu}(\gamma))}{\Gamma(\pi \to \mu\bar{\nu}(\gamma))}_{calc} =$

 $\begin{cases} 1.2352 (5) \times 10^{-4} & \text{Marciano and Sirlin, [PRL$ **71** $(1993) 3629]} \\ 1.2354 (2) \times 10^{-4} & \text{Finkemeier, [PL B$ **387** $(1996) 391]} \\ 1.2352 (1) \times 10^{-4} & \text{Cirigliano and Rosell, [PRL$ **99** $, 231801 (2007)]} \end{cases}$

Experiment, world average [current PDG]:

$$rac{\Gamma(\pi
ightarrow ear{
u}(\gamma))}{\Gamma(\pi
ightarrow \muar{
u}(\gamma))}_{ ext{exp}} = (1.230 \pm 0.004) imes 10^{-4}$$

N.B.:

PEN goal:
$$\frac{\delta B}{B} \simeq 5 \times 10^{-4}$$
.

D. Počanić (UVa)

π_{e2} decay and the SM

 $B(\pi_{e2})$ in SM dominated by (V - A) helicity suppression. Deviations primarily due to PS int. terms. Most general 4-fermion π_{e2} amplitude:

$$\begin{aligned} \frac{\mathcal{G}_{\mathcal{F}}}{\sqrt{2}} \Big[\left(\bar{d} \gamma_{\mu} \gamma^{5} u \right) \left(\bar{\nu}_{e} \gamma^{\mu} \gamma^{5} (1 - \gamma^{5}) e \right) \mathbf{f}_{\mathsf{AL}}^{e} \\ &+ \mathbf{f}_{\mathsf{PL}}^{e} \left(\bar{d} \gamma^{5} u \right) \left(\bar{\nu}_{e} \gamma^{5} (1 - \gamma^{5}) e \right) \Big] + \mathsf{r.h.} \ \nu \ \mathsf{term} \end{aligned}$$

In the SM: $f_{AL}^{\ell} = 1$, while $f_{XR}^{\ell} = f_{PX}^{\ell} = 0$, with $\ell = e, \mu$.

Strong helicity suppression amplifies sensitivity to f_{PL}^e :

$$\frac{B_{\pi e 2}^{\text{obs}} - B_{\pi e 2}^{\text{SM}}}{B_{\pi e 2}^{\text{SM}}} = \frac{\Delta B}{B^{\text{SM}}} = \dots \simeq \frac{2m_{\pi}^2}{m_e(m_u + m_d)} f_{\text{PL}}^e \simeq 7700 f_{\text{PL}}^e \ !$$

Tgt accuracy of the PEN experiment, $\Delta B/B \simeq 5 \times 10^{-4}$, translates into attractive mass limits on charged Higgs, PS and V leptoquarks, SUSY particles . . .

D. Počanić (UVa)

PEN experiment: status and plans

- Approved in 2006; development runs: 2007, '08; data runs '09, '10.
- Improved beam tracking (miniTPC) implemented in '09, '10 runs.
- ► > 20 M π_{e2} 's recorded $\Rightarrow (\delta B/B)_{stat} \simeq 2 \times 10^{-4}$.

Illustration: decays in the target detector (2008 run):

Neutron beta decay: $\mathbf{n} ightarrow \mathbf{pe}^- ar{oldsymbol{ u}}_{\mathbf{e}}$

Nab and abBA/PANDA experiments planned for SNS/FnPB

D. Počanić (UVa)

From HI resonances to SM tests

Cindro Symp 2011 33 / 43

Neutron decay parameters (SM)

$$\begin{split} \frac{dW}{dE_e d\Omega_e d\Omega_\nu} &\simeq k_e E_e (E_0 - E_e)^2 \\ &\times \left[1 + a \frac{\vec{k}_e \cdot \vec{k}_\nu}{E_e E_\nu} + b \frac{m}{E_e} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{k}_e}{E_e} + B \frac{\vec{k}_\nu}{E_\nu} \right) + \dots \right] \end{split}$$

where:

.

$$\mathsf{a} = rac{1 - |\lambda|^2}{1 + 3|\lambda|^2}$$
 $\mathsf{A} = -2rac{|\lambda|^2 + \operatorname{Re}(\lambda)}{1 + 3|\lambda|^2}$

$$\mathsf{B} = 2 \frac{|\lambda|^2 - \mathsf{Re}(\lambda)}{1 + 3|\lambda|^2} \qquad \lambda = \frac{\mathsf{G}_{\mathsf{A}}}{\mathsf{G}_{\mathsf{V}}} \text{ (with } \tau_{\mathsf{n}} \Rightarrow \mathsf{CKM} \mathsf{V}_{\mathsf{ud}})$$

also:

$$C = \kappa (A + B)$$
 where $\kappa \simeq 0.275$.

D. Počanić (UVa)

The FnPB neutron decay program at SNS

- Nab: a precise measurement of
 - a, the electron-neutrino correlation in neutron decay, and
 - \circ **b**, the Fierz interference term (never measured in **n** decay).
- Polarized program (abBA/PANDA): precise measurements of
 - A, the electron asymmetry in neutron decay,
 - **B**, the neutrino asymmetry in neutron decay,
 - **C**, the proton asymmetry in neutron decay;

Goal uncertainties: $\frac{\delta a}{a}$, $\frac{\delta A}{A}$, $\frac{\delta B}{B}$, $\frac{\delta C}{C} \leq 10^{-3}$, and $\delta b < 3 \times 10^{-3}$

- $\lambda = G_A/G_F$ will be triply overconstrained!.
- ▶ Non-(V-A) terms in \mathcal{L}_{weak} : esp. RH/LH **T** terms, L-R symmetric SUSY ext's, CVC/SCC's, implications in ν sector ...

Status of A and λ in *n* decay

Electron-neutrino angle from $E_{\rm e}$ and $E_{\rm p}$

Nab Measurement principles: Proton phase space

NB: For a given E_e , $\cos \theta_{e\nu}$ is a function of p_p^2 only.

Slope $\propto a$

Nab principle of operation

- Collect and detect **both** electron and proton from neutron beta decay (magnetic field, detectors at both ends); hermeticity!
- Measure electron energy and proton TOF and reconstruct decay kinematics (Magnetic field shape, silicon detectors at both ends).

D. Počanić (UVa)

abBA/PANDA configuration:

- A: detect electrons in upper, protons in lower detector;
- B/C: detect protons in upper, electrons in both detectors;

Summary

Thoughts on Nikola and my path in physics

- A lifetime in subatomic physics initiated in the 1970's under Nikola Cindro's mentorship.
- Nikola's devotion to scientific integrity and accuracy, aggressive pursuit of scientific opportunities, live on in his students.

On low energy SM tests:

- A large experimental effort is under way to exploit the unparalleled theoretical precision in weak interactions of the lightest particles.
- Information is complementary to expected collider results, and necessary for their proper interpretation.
- Orders of magnitude of improvement in precision have been achieved; more lie in store; all in human-scale experiments.

Home pages: http://pibeta.phys.virginia.edu http://pen.phys.virginia.edu http://nab.phys.virginia.edu

D. Počanić (UVa)

Current and former PIBETA and PEN collaborators

L. P. Alonzi^a, K. Assamagan^a, V. A. Baranov^b, W. Bertl^c, C. Broennimann^c,
S. Bruch^a, M. Bychkov^a, Yu.M. Bystritsky^b, M. Daum^c, T. Flügel^c, E. Frlež^a,
R. Frosch^c, K. Keeter^a, V.A. Kalinnikov^b, N.V. Khomutov^b, J. Koglin^a,
A.S. Korenchenko^b, S.M. Korenchenko^b, M. Korolija^d, T. Kozlowski^e,
N.P. Kravchuk^b, N.A. Kuchinsky^b, D. Lawrence^h, W. Li^a, J. S. McCarthy^a,
R. C. Minehart^a, D. Mzhavia^{b, f}, A. Palladino^{a, c}, D. Počanić^{a*}, B. Ritchie^h,
S. Ritt^{a, c}, P. Robmann^g, O.A. Rondon-Aramayo^a, A.M. Rozhdestvensky^b,
T. Sakhelashvili^f, S.N. Shkarovskiy^b, P. L. Slocum^a, L. C. Smith^a, N. Soić^d,
U. Straumann^g, I. Supek^d, P. Truöl^g, Z. Tsamalaidze^f, A. van der Schaaf^{g*},
E.P. Velicheva^b, V.P. Volnykh^b, Y. Wang^a, C. Wigger^c, H.-P. Wirtz^c, K. Ziock^a.

^a Univ. of Virginia, USA ^cPSI, Switzerland ^eSwierk, Poland ^gUniv. Zürich, Switzerland ^b JINR, Dubna, Russia ^d IRB, Zagreb, Croatia ^f IHEP, Tbilisi, Georgia ^h Arizona State Univ., USA

Home pages: http://pibeta.phys.virginia.edu http://pen.phys.virginia.edu

D. Počanić (UVa)

Nab collaborators

R. Alarcon¹, L.P. Alonzi^{2§}, S. Baeßler^{2*}, S. Balascuta^{1§}, J.D. Bowman^{3†},
M.A. Bychkov², J. Byrne⁴, J.R. Calarco⁵, V. Cianciolo³, C. Crawford⁶,
E. Frlež², M.T. Gericke⁷, F. Glück⁸, G.L. Greene⁹, R.K. Grzywacz⁹,
V. Gudkov¹⁰, F.W. Hersman⁵, A. Klein¹¹, J. Martin¹², S.A. Page⁶,
A. Palladino^{2§}, S.I. Penttilä^{3‡}, D. Počanić^{2†}, K.P. Rykaczewski³,
W.S. Wilburn¹¹, A.R. Young¹³.

¹Arizona State University
³Oak Ridge National Lab
⁵Univ. of New Hampshire
⁷University of Manitoba
⁹University of Tennessee
¹¹Los Alamos National Lab
¹³North Carlolina State Univ.
[†]Co-spokesmen
[‡]On-site Manager Home page: http://s ²University of Virginia
⁴University of Sussex
⁶University of Kentucky
⁸Uni. Karlsruhe/RMKI Budapest
¹⁰University of South Carolina
¹²University of Winnipeg

*Experiment Manager §Graduate Students

Home page: http://nab.phys.virginia.edu/

D. Počanić (UVa)

From HI resonances to SM tests

Cindro Symp 2011 43 / 43