

Nikola Cindro (1931 – 2001)

EXTENSIONS OF FISSION THEORY OF NUCLEAR CLUSTER DECAY

Dorin N. POENARU, Radu A. GHERGHESCU, Walter GREINER

National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest-Magurele, Romania

and

Frankfurt Institute for Advanced Studies (FIAS), J W Goethe University, Frankfurt am Main, Germany

N. Cindro and M. Božin Heavy-fragment radioactivities and resonances in heavy-ion collisions: A correlation, *Phys. Rev.* **39** (1989) 1665.

Abstract A strong correlation is found to exist between the phenomena of heavy-fragment radioactivity and high transparency in the molecular window for the same nuclei taken, in turn, as emitters and composite systems. Such a correlation sheds new light on the nature of heavy-fragment radioactivity and provides a new way of searching for possible resonant phenomena in heavy nuclei.

OUTLINE

Macroscopic-microscopic method

- Unified approach of cold fission, α -decay and heavy ion radioactivities within ASAF model
- Experimental confirmations
- Fine structure
- Extensions

saddle-point shapes obtained as solution of an Euler-Lagrange equation
 α-decay of superheavies (ASAF, universal curve, semi-empirical formula)
 multicluster fission (true ternary, quaternary, etc)
 atomic cluster on a surface and fission of charged clusters

Macroscopic-microscopic method

Accounting for quantum single-particle structure and classical collective properties.

Liquid Drop Model: E_{LD}

Single-particle shell model (SPSM): energy levels vs. deformation. *Two-center shell model for fission and fusion.*

Shell correction method: $\delta E = \delta U + \delta P$

Total deformation energy: $E_{def} = E_{LD} + \delta E$

The potential of SPSM Hamiltonian should admit the drop eq. $\rho = \rho(z)$ as an equipotential surface. Semi-spheroidal shape, allows to obtain analytical results for atomic clusters on a surface.

Intersected spheres

Two intersected spheres. Volume conservation and $R_2 = \text{const.}$ One deformation parameter: separation distance R. Surface equation $\rho = \rho(z)$. Initial $R_i = R_0 - R_2$. Touching point $R_t = R_1 + R_2$.

 $(R-R_i)/(R_t-R_i)=0.25$ Example: $^{232}U \rightarrow ^{24}Ne + ^{208}Pb$ 1.0 0.50 0.75 0.8 1 25 Two center shell model (Frankfurt) potential 0.6 ⁰/^z/^z/ 0.4 $(R-R_i)/R_{ti}=0$ 0.25 0.50 0.75 0.2 0.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Sequence of shapes z/R_0

Nucleus considered a uniformly charged drop. Two variants: LDM and Yukawa-plus-exponential (Y+EM). LDM (surface + Coulomb) deformation energy

 $E_{LDM} = E - E^{0} = (E_{s} - E_{s}^{0}) + (E_{C} - E_{C}^{0})$ $= E_{s}^{0}(B_{s} - 1) + E_{C}^{0}(B_{C} - 1)$ For spherical shapes $E_{s}^{0} = a_{s}(1 - \kappa I^{2})A^{2/3}$; I = (N - Z)/A; $E_{C}^{0} = a_{c}Z^{2}A^{-1/3}$. Nuclear fissility $X = E_{c}^{0}/(2E_{s}^{0})$.

Parameters obtained by fit to experimental data on nuclear masses, quadrupole moments and fission barriers: $a_s = 17.9439$ MeV, $\kappa = 1.7826$, $a_c = 3e^2/(5r_0)$, $e^2 = 1.44$ MeV·fm, $r_0 = 1.2249$ fm. W.D. Myers and W.J. Swiatecki, Nucl. Phys. A 81 (1966) 1

LDM PES and saddle-point shapes

Potentialenergysurfaces(PES) 106 Te(left) 232 Th (right)

Saddle point shapes for fissility parameter X = 0.60, 0.70, 0.82 (¹⁷⁰Yb, ²⁰⁴Pb, ²⁵²Cf nuclei) obtained by solving an integro-differential equation.

D.N. Poenaru, R.A. Gherghescu, W. Greiner, *Nucl. Phys.* A 747 (2005) 182–205.

The total energy of the uniform level distribution

$$\tilde{u} = \tilde{U}/\hbar\omega_0^0 = 2\int_{-\infty}^{\tilde{\lambda}} \tilde{g}(\epsilon)\epsilon d\epsilon$$

In units of $\hbar \omega_0^0$ the shell corrections are calculated for each deformation ε

$$\delta u(n,\varepsilon) = \sum_{i=1}^{n} 2\epsilon_i(\varepsilon) - \tilde{u}(n,\varepsilon)$$

 $n = N_p/2$ particles. Then $\delta u = \delta u_p + \delta u_n$.

Pairing corrections

The gap Δ and Fermi energy λ are solutions of the BCS eqs:

$$0 = \sum_{k_i}^{k_f} \frac{\epsilon_k - \lambda}{\sqrt{(\epsilon_k - \lambda)^2 + \Delta^2}} \quad ; \quad \frac{2}{G} = \sum_{k_i}^{k_f} \frac{1}{\sqrt{(\epsilon_k - \lambda)^2 + \Delta^2}}$$

$$k_i = Z/2 - n + 1, \quad k_f = Z/2 + n', \quad \frac{2}{G} \simeq 2\tilde{g}(\tilde{\lambda}) \ln\left(\frac{2\Omega}{\tilde{\Delta}}\right).$$

The pairing correction $\delta p = p - \tilde{p}$, represents the difference between the pairing correlation energies for the discrete level distribution $p = \sum_{k=k_i}^{k_f} 2v_k^2 \epsilon_k - 2\sum_{k=k_i}^{Z/2} \epsilon_k - \frac{\Delta^2}{G}$ and for the continuous level distribution $\tilde{p} = -(\tilde{g}\tilde{\Delta}^2)/2 = -(\tilde{g}_s\tilde{\Delta}^2)/4$. Compared to shell correction, the pairing correction is out of phase and smaller. One has again $\delta p = \delta p_p + \delta p_n$, and $\delta e = \delta u + \delta p$.

Example: Na $_{148}$ atomic cluster

Dorin N. POENARU. IFIN-HH

G

 $E_v = -333 \text{ eV}$ was not included in E_{LD} and E. Liquid drop and total deformation energy (top). Shell plus pairing corrections for hemispheroidal harmonic oscillator energy levels (bottom). Smoothing effect of pairing. Ground state shape prolate $\delta = 0.47$ Semiaxes ratio $\frac{a}{c} = \frac{2-\delta}{2+\delta}$

Mass asymmetry

Shell effects explain the mass asymmetry. Saddle point nuclear shape obtained as a solution of integro-differential equation.

D.N. Poenaru, R.A. Gherghescu, W. Greiner, *Nucl. Phys.* A 747 (2005) 182–205.

²²²**Ra** E_{Y+EM} , $\delta E_{shell+pair}$, E_{def} **PES**

separation distance $\xi = (R - R_i)/(R_t - R_i)$ mass asymmetry $\eta = (A_1 - A_2)/(A_1 + A_2)$

Poenaru, Gherghescu, W.Greiner, Phys. Rev. C 73 (2006) 014608

Basic relationships

Parent \rightarrow emitted ion + daughter nucleus, ${}^{A}Z \rightarrow {}^{A_{e}}Z_{e} + {}^{A_{d}}Z_{d}$ Measurable quantities

Kinetic energy of the emitted cluster $E_k = QA_1/A$ or the released energy $Q = M - (M_e + M_d) > 0$.

Decay constant $\lambda = \ln 2/T$ or Half-life ($T < 10^{32}$ s) or branching ratio $b_{\alpha} = T_{\alpha}/T$ ($b_{\alpha} > 10^{-17}$)

Model dependent quantities ($\lambda = \nu SP_s$)

- $\checkmark \nu$ frequency of assaults or $E_v = h\nu/2$
 - S preformation probability
- P_s penetrability of external barrier

Fission theory

Shape parameters: fragment separation, R, and mass asymetry $\eta = (A_d - A_e)/A$.

Our method to estimate preformation as penetrability of internal barrier: $S = \exp(-K_{ov})$. DNP, WG, *Physica Scripta* 44 (1991) 427. Similarly $P = \exp(-K_s)$ for external barrier. Action integral calculated within Wentzel-Kramers-Brillouin (WKB) quasiclasical approximation

$$K_{ov} = \frac{2}{\hbar} \int_{R_i}^{R_t} \sqrt{2B(R)E(R)} dR$$

E - Potential barrier

Dorin N. POENARU. IFIN-HH

G

 $B = \mu$ – Nuclear inertia = reduced mass for $R \ge R_t$

Experimental masses

3290 nuclei,
2377 measured
and 913 det. from
Systematics.
G. Audi, W.
Meng, Private
communication
2011.

Dorin N. POENARU, IFIN-HH

International Symposium in honour of Nikola Cindro, 22-24 Sept 2011, Split - p.15/43

Examples of time spectra (I)

Examples of time spectra (II)

 $^{288}114 \rightarrow {}^{80}Ge + {}^{208}$ Pb. D.N. Poenaru, R.A. Gherghescu, W. Greiner, *Phys. Rev. Lett.* **107** (2011) 062503.

Superheavies as cluster emitters

New concept: for $Z > 110 Z_e > 28$ to get a daughter around ²⁰⁸Pb. D.N. Poenaru, R.A. Gherghescu, W. Greiner, *Phys. Rev. Lett.* **107** (2011) 062503.

Unified approach: CF; HPR, and α **-d**

Three valleys: cold-fission (almost symmetrical); ¹⁶O radioactivity, and α -decay

²³⁴U half-lives spectrum (short T up)

Experimental confirmations

Rare events in a strong background of α particles Detectors:

- Semiconductor telescope + electronics
- Magnetic spectrometers (SOLENO, Enge split-pole)
- Solid state nuclear track det. (SSNTD). Cheap and handy. Need to be chemically etched then follows microscope scanning

Experiments performed in Universities and Research Institutes from: Oxford; Moscow; Orsay; Berkeley; Dubna; Argonne; Livermore; Geneva; Milano; Vienna, and Beijing. Table: R. Bonetti and A. Guglielmetti, Rom. Rep. Phys. **59** (2007) 301.

Natural radioactive family

Compare α and β^- to ¹⁴C and ²⁴Ne decays

Dorin N. POENARU, IFIN-HH

International Symposium in honour of Nikola Cindro, 22-24 Sept 2011, Split - p.21/43

Systematics $T_{1/2}$: ¹⁴C, ^{18,20}O, ²³F rad.

new confirm — A. Guglielmetti et al., J Phys: Conf Ser 111 (2008) 012050 One of the new candidates from our paper: Poenaru, Nagame, Gherghescu, W. Greiner *Phys. Rev.* C 65 (2002) 054308.

Systematics $T_{1/2}$: ^{22,24,25,26}**Ne rad.**

Only lower limits for ¹⁸O and ²⁶Ne

Systematics $T_{1/2}$: ^{28,30}**Mg**, ^{32,34}**Si rad**.

Universal curves (I)

Approximations: $\log S = [(A_e - 1)/3] \log S_{\alpha}$, $\nu(A_e, Z_e, A_d, Z_d) = \text{constant. From fit to } \alpha \text{ decay:}$ $S_{\alpha} = 0.0160694 \text{ and } \nu = 10^{22.01} \text{ s}^{-1}.$

 $\log T = -\log P - 22.169 + 0.598(A_e - 1)$

 $-\log P = c_{AZ} \left[\arccos \sqrt{r} - \sqrt{r(1-r)} \right]$ $c_{AZ} = 0.22873(\mu_A Z_d Z_e R_b)^{1/2}, \ r = R_t/R_b, \ R_t = 1.2249(A_d^{1/3} + A_e^{1/3}), \ R_b = 1.43998Z_d Z_e/Q, \text{ and } \mu_A = A_d A_e/A.$ DN Poenaru, W Greiner, *Physica Scripta* 44 (1991) 427.

Universal curves (II)

Geiger-Nuttal plot $T_{\alpha} = f(\text{range of } \alpha \text{ in air})$ log $T = f(1/Q^{-1/2})$

Single Universal curve: α **and HIR**

D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. C, 83 (2011) 014601.

KTUY05 Calculated Masses

9441 nuclei with Z=2-130 and N=2-200. H. Koura, T. Tachibana, M. Uno and M. Yamada, *Prog. Theor. Phys.* **113** (2005) 305.

FRDM95 Calculated Masses

8979 nuclei with Z=8-136 and N=8-236. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, *At. Data Nucl.Data Tables* **59** (1995) 185.

HIR of SH nuclei

Half-lives

Branching ratios

Branching ratio with respect to α decay: $b_{\alpha} = T_{\alpha}/T_c$. Usually $b_{\alpha} << 1$. Trend: shorter T_c and larger b_{α} . For larger Z > 120 there are SHs with $T_c < 1$ ns and $b_{\alpha} > 1$.

SH nuclei as cluster emitters

FRDM95 $Z_e \leq Z - 80$ (freq. daughter around ²⁰⁸Pb) Most probable emitted clusters with different colors.

Fine structure of ¹⁴**C radioactivity**

Martin Greiner and Werner Scheid, Radioactive decay into excited states via heavy ion emission, *J. Phys. G: Nucl. Phys.* **12** (1986) L229.

Experiments with SOLENO spectrometer at Orsay, France: E. Hourany, M. Hussonnois *et al.*, *C. R. Acad. Sci. Paris* **309** (1989) 1105. E. Hourany *et al.*, *Phys. Rev.* **C 52** (1995) 267: the transition from the gs of 223 Ra to the first excited state of the daughter 209 Pb is stronger than that to its gs. A transition with an excited state of 14 C was not observed.

Dorin N. POENARU. IFIN-HH

G

USTE

$\alpha\text{-decay:}$ ASAF, semFIS & UNIV

STANDARD DEVIATION

Group	σ -ASAF	σ -UNIV	σ -semFIS
47 e-e	0.402	0.267	0.164
45 e-o	0.615	0.554	0.507
25 о-е	0.761	0.543	0.485
25 0-0	0.795	0.456	0.451

Poenaru, D.N., Plonski, I.H., Gherghescu, R.A., Greiner, W., *J. Phys. G* **32** (2006) 1223

UNIV and UDL curve for $\alpha \mathbf{Z}_{even}$

UDL: C. Qi, F.R. Xu, R.J. Liotta, R. Wyss Phys. Rev. Lett. 103 (2009) 072501.

Multicluster fission (I)

True-ternary and 2 particle-accompanied fission (quaternary)

D.N. Poenaru and W. Greiner, *J. Phys. G: Nucl. Part. Phys.* 25 (1999) L7 D.N. Poenaru, W. Greiner, J.H. Hamilton, A.V. Ramayya, E. Hourany and R.A. Gherghescu, *Phys. Rev.* C 59 (1999) 3457

Multicluster fission (II)

Good chance to be detected: 2α -, 3α -, and 4α -accompanied fission. Q-value and pot. barrier of 2α -accompanied fission is similar to ⁸Be-accompanied fission.

EXPERIMENTS: F. Gönnenwein, P. Jesinger, M. Mutterer, W.H. Trzaska, G. Petrov, A.M.
Gagarski, V. Nesvizhevski and P. Geltenbort, *Heavy Ion Physics* 18 (2003) 419.
F. Gönnenwein, M. Mutterer and Yu. Kopatch, *Europhysics News* 36 (2005) 11.
Yu.V. Pyatkov, D.V. Kamanin, W.H. Trzaska, W. von Oertzen *et al. Rom. Rep. Phys.* 59 (2007) 569.

Applications: Atomic clusters

The delocalized conduction (valence) electrons of a metallic cluster form a Fermi liquid like the nucleons in an atomic nucleus, hence one can extend the MMM to atomic clusters.

Some publications

- D.N. Poenaru, R.A. Gherghescu, A.V. Solov'yov, W. Greiner, EPL
 79 (2007) 63001.
- D.N. Poenaru, R.A. Gherghescu, I.H. Plonski, A.V. Solov'yov, W.
 Greiner, Europ. Phys. J. D 47 (2008) 379-393. HIGHLIGHT PAPER.
- D.N. Poenaru, R.A. Gherghescu, A.V. Solov'yov, W. Greiner, *Phys. Lett.* A372 (2008) 5448-5451.
- R.A. Gherghescu, D.N. Poenaru, A.V. Solov'yov, W. Greiner, Int. J.
 Mod. Phys. B 22 (2008) 4917-4935.

Hemispheroidal atomic cluster (I)

Hemispheroidal atomic cluster $a^2c = 1$ — volume conservation $a = [(2 - \delta)/(2 + \delta)]^{1/3}$ New shell model with striking properties of symmetry. Maximum degeneracy at $\delta = 2/3$

D.N. Poenaru, R.A. Gherghescu, A.V. Solov'yov, W. Greiner, Phys. Lett. A 372 (2008) 5448; EPL 79 (2007) 63001; 88 (2009) 23002

Dorin N. POENARU, IFIN-HH

G

CUSTER

Hemispheroidal atomic cluster (II)

Figures, TOP: LDM (surface + curvature) energy of Na_{56} semispheroidal cluster compared to the spheroidal one. BOTTOM: Na_{148} cluster, pairing corrections, total deformation energy (LDM + shell and pairing corrections). Within LDM the most stable shape is a superdeformed prolate

D.N. Poenaru, R.A. Gherghescu, A.V. Solov'yov, W. Greiner, EPJD **47** (2008) $379 \rightarrow$ HIGHLIGHT PAPER; J. Phys. G: Nucl. Part. Phys. **36** (2009) 125101; **37** (2010) 085101; Nucl. Phys. A **834** (2010) 163c; Int. J. Mod. Phys. B **24** (2010) 3411

Liquid drop model of a charged cluster

 M_N^{z+} will have $n_e = N - z$ delocalized electrons. Deformation energy

$$E_{LDM} = E - E^{0} = (E_{s} - E_{s}^{0}) + (E_{C} - E_{C}^{0}) = E_{s}^{0}(B_{s} - 1) + E_{C}^{0}(B_{C} - 1)$$

Spherical shapes: $E_s^0 = 4\pi R_0^2 \sigma = a_s n_e^{2/3} = 4\pi r_s^2 n_e^{2/3}$; $E_{C-metal}^0 = z^2 e^2/(2R_0) = z^2 e^2/(2r_s n_e^{1/3})$ for a surface distrib. of charge. The ratio to $E_C^0 = 3z^2 e^2/(5R_0)$ for bulk homog. charge distr. is 5/6, i.e. 17 % smaller.

 σ – surface tension. r_s – Wigner-Seitz radius.

Fissility
$$X = \frac{E_c^0}{2E_s^0} = \frac{e^2}{16\pi r_s^3 \sigma} \frac{z^2}{n_e} < 1$$
; $n_e > n_c = \frac{e^2 z^2}{16\pi r_s^2 \sigma}$

Within LDM VERY LIGHT CHARGED ATOMIC CLUSTERS ARE UNSTABLE. For nuclear fission $X = E_c^0/(2E_s^0) \simeq [3e^2/(10r_0a_s)](Z^2/A) < 1$ leading to $Z^2/A < (Z^2/A)_c \simeq 10r_0a_s/(3e^2)$ SUPERHEAVY NUCLEI ARE UNSTABLE. Tables of material properties (r_s , σ or a_s , a_v , etc): J.P. Perdew, Y. Wang, E. Engel, *Phys. Rev. Lett.* **66** (1991) 508. U. Näher, S. Bjørnholm, S. Frauendorf, F. Garcias, C. Guet, *Phys. Rep.* **285** (1997) 245.

Cs an Ideal Emitter of a trimer M_3^+

Details of the large asymmetry part of scission point deformation energies E_{LDM} (dotted line) and $E_{LDM} + \delta E$ (full line) for different values n_e . Both E_{LDM} and δE have minima at $n_e = 2$.

$\mathbf{Ag}_{n_e+6}^{6+}$ Spheres and Hemispheroids

Max. *Q*-value for two fragments with magic numbers of electrons $n_e = 2 + n_{d-magic}$. For spherical shape $n_{d-magic} = 40, 58, 92, 136, 198$. For a superdeformed hemispheroid $n_{d-magic} = 70, 112, 168$.

Dorin N. POENARU, IFIN-HH

G

Summary

- ASAF model predictions have been confirmed for parent nuclei with Z = 87 96
- The magicity of the daughter ²⁰⁸Pb was not fully exploited: new experimental searches can be performed
- The ASAF, semFIS and universal curves UNIV and UDL provide good estimation of half-lives
- For some superheavies HIR half-lives could be shorter than that of α decay
- One can obtain saddle-point shapes by solving an integro-differential equation
- Experimental evidence for multicluster fission: 2α -accompanied fission and collinear cluster tri-partition
- Nanophysics of atomic clusters
 - The maximum degeneracy of the new hemispheroidal shell model occurs at a superdeformed prolate semi-spheroidal shape
 - LDM equilibrium shapes: superdeformed prolate hemispheroid; oblate shapes obtained by simulating the interaction with the substrate
 - Charged clusters are ideal "alpha" (singly ionized trimer fragment) emitters

