The symmetry energy at high density: new experimental results

W. Trautmann GSI Helmholtzzentrum, Darmstadt, Germany

Symposium in Honour of Nikola Cindro September 22-24, 2011, Split, Croatia

back in time with ¹⁴C

14

1980 in Munich

PHYSICAL REVIEW LETTERS

Elastic and Inelastic Scattering of ¹⁴C by ¹⁴C

D. Konnerth, K. G. Bernhardt, K. A. Eberhard, R. Singh,^(a) A. Strzalkowski,^(b) W. Trautmann, and W. Trombik Sektion Physik, Universität München, D-8046 Garching, West Germany (Received 14 July 1980)

1980 in Los Alamos

PHYSICS LETTERS

GROSS STRUCTURE AND RESONANT BEHAVIOR OF ¹⁴C + ¹⁴C ELASTIC SCATTERING[☆]

D.M. DRAKE and M. CATES University of California, Los Alamos Scientific Laboratory, Los Alamos, NM 87545, USA

and

N. CINDRO, D. POCANIC and E. HOLUB "Rudjer Boskovic" Institute, 41001 Zagreb, Croatia, Yugoslavia

Received 2 July 1980

back in time with 14C ...

¹⁴C elastic scattering measured at $\theta_{\rm cm} = 90^{\circ}$ as a function

Mazurian Lakes Summer School Piaski, 1993

Concert, Concert, Concert Acta Physica Polonica 25,645(1994)

Sunday, August 22 7³⁰ p.m.

"I solisti di Varsavia"

lecture by Pawel Haensel

lecture by Pawel Haensel

direct URCA $n \rightarrow p+e^{-}+\bar{v}$ $p+e^{-} \rightarrow n+v$

momentum conservation requires $f_p > 0.11$ modified URCA $n+N \rightarrow p+N+e^-+\bar{v}$ $p+N+e^- \rightarrow n+N+v$

momentum conserved with spectator nucleon

and the second second

standard cooling

surface temperature versus age

direct URCA $n \rightarrow p+e^{-}+\bar{v}$ $p+e^{-} \rightarrow n+v$

momentum conservation requires $f_n > 0.11$

modified URCA $n+N \rightarrow p+N+e^-+\bar{v}$ $p+N+e^- \rightarrow n+N+v$

momentum conserved with spectator nucleon

standard cooling

surface temperature versus age

direct URCA $n \rightarrow p+e^{-}+\bar{v}$ $p+e^{-} \rightarrow n+v$

momentum conservation requires $f_p > 0.11$

modified URCA $n+N \rightarrow p+N+e^-+\bar{v}$ $p+N+e^- \rightarrow n+N+v$

momentum conserved with spectator nucleon

standard cooling

neutron star cooling: CPF neutrinos

Shternin et al., arXiv:1012:0045 : direct observation of Cas A cooling with CHANDRA a, c: different models for critical temperature of triplet-state neutron pairing in NS core.

symmetry energy in HI reactions

Bao-An Li, PRL 88, 192701 (2002)

probe the early reaction phase with suitable observables like differential neutron-proton flow!

 $B_{sym} = -23.4 \text{ MeV} \cdot (N-Z)^2/A$

Fermi-gas model for kinetic part: $B_{sym} = -(\epsilon_F/3) \cdot (N-Z)^2/A$

density dependence $(\rho/\rho_0)^{2/3}$

equivalent to $\approx 1/3$ of strength potential part equivalent to $\approx 2/3$

isospin asymmetry I = (N-Z)/A

nuclear-matter equation of state $E_A(\rho, \delta) = E_A(\rho, 0) + E_{sym}(\rho) \cdot \delta^2$

asymmetry parameter $\delta = (\rho_n - \rho_p)/\rho$

proton fraction $f_p = \rho_p / \rho = (1 - \delta)/2$

the symmetry energy

why so uncertain at high density?

related to uncertainty of three-body and tensor forces at high density

normal nuclear density

the symmetry energy

Fuchs and Wolter, EPJA 30 (2006)

param. in transport: UrQMD, Q.F. Li et al.

 $E_{sym} = E_{sym}^{pot} + E_{sym}^{kin}$ = 22MeV·(ρ/ρ_0)^Y+12MeV·(ρ/ρ_0)^{2/3}

L = $3\rho_0 \cdot dE_{sym}/d\rho$ at $\rho = \rho_0$ $\gamma = 0.5 \quad 1.0 \quad 1.5$ L = 57 \quad 90 \quad 123 \text{ MeV}

the symmetry energy

Fuchs and Wolter, EPJA 30 (2006)

- at very low densities: E_{sym} finite because of clustering
- near normal density: E_{sym} constrained by g.s. masses, nuclear structure and reactions; can we extrapolate?
- probes for high density

the symmetry energy at very low density

ECT* Workshop, June 2011 "Clusters in Nuclei and Nuclear Matter"

Clustering at subsaturation densities G. Peilert, J. Randrup, H. Stöcker and W. Greiner, PLB 260 (1992)

"... for $\rho \sim 0$ the binding energy approaches that characteristic of finite nuclei, namely E/A=6-8 MeV. slide from talk of X. Viñas, ECT*, Trento, June 2011

Constraints on the slope of the symmetry energy

isospin diffusion

figure from Lattimer and Prakash, Phys. Rep. (2007)

Tsang et al., PRL 102, 122701 (2009): $0.4 \le \gamma \le 1.0$ 45 MeV $\le L \le 100$ MeV

from isospin diffusion and neutron-proton double ratios interpreted with ImQMD calculations by Y. Zhang et al.

previously: $E_{sym}(\rho) \approx 31.6 \cdot (\rho/\rho_0)^{0.69}$ with IBUU04, Li and Chen, PRC72(2005)

neutron skin and the symmetry energy

Horowitz & Piekarewicz, PRL 86 (2001): a data-to-data relation between the neutron skin of a heavy nucleus and the crust of a neutron star

JLAB E-003 A CLEAN MEASUREMENT OF THE NEUTRON SKIN OF 208 Pb THROUGH PARITY VIOLATING ELECTRON SCATTERING

The Lead Radius Experiment (PREX) measures the parity violating asymmetry A_{pv} for 1.063 GeV electrons scattering from ²⁰⁸Pb at 5 degrees. This measurement should be sensitive to the neutron r.m.s radius of 208Pb to 1%.

neutron skin and the symmetry energy

slide from talk of X. Viñas, ECT*, Trento, June 2011

neutron skin and the symmetry energy

the symmetry energy at high density

why is is so uncertain ?

three body forces enhance the symmetry energy at high density (Fiorella Burgio, ASY-EOS Workshop, Noto, 2010)

test of short range correlations in ¹²C(e,e') at J-Lab show that the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs; modifies momentum distributions in asymmetric matter and confirms the role of the tensor force acting in neutron-proton isosinglet pairs .

ESF Exploratory Workshop on How to Constrain the High Density Symmetry Energy - HiDeSymEne 16-18 October 2009, Zagreb, Croatia Convened by: Zoran Basrak, RBI

isotopic particle (double) ratios FOPI data

HIC scenario:

fast neutron emission (mean field effect) and transformation of neutron into proton in inelastic channels (no-chemical equilibrium)

Ferini et al. Xiao et al. Feng and Jin stiffer for ratio up softer " stiffer "

consequence: extremely stiff (soft) solutions

differential flow in heavy-ion collisions

minimizes role of isoscalar part of the EoS

differential: neutrons vs. protons t vs. ³He, ⁷Li vs ⁷Be, ...

UrQMD: significant sensitivity predicted for differential elliptic flow (Q.F. Li and P. Russotto)

promising results from reanalysis of FOPI-LAND data: $\gamma = 0.9 \pm 0.4$ Russotto, Wu, Zoric, Chartier, Leifels, Lemmon, Li, Lukasik, Pagano, Pawlowski, Trautmann, PLB 697, 471 (2011)

results from FOPI/LAND experiment

reanalysis of Au+Au 400 A MeV data

neutron squeeze-out: Y. Leifels et al., PRL 71, 963 (1993)

results from FOPI/LAND experiment

0.00 -0.05 ۲₂ a-stif -0.10 UrQMD for neutrons -0.15 1.0 a-stiff v2ⁿ/v2^H a-soft 0.5 FP1: weighted mean $\gamma = 1.01(21)$ 0.0 0.2 0.3 0.6 0.7 0.8 0.9 1.0 0.4 0.5 pt/A (GeV/c)

120 F15 $\gamma = 1.5$ linear 100 F05 ---- Fa3 80 E^{pot} [MeV] 60 40 $\gamma = 0.5$ 20 2 3 u

parameters

in UrQMD, Q.F. Li et al.

neutron/hydrogen FP1: $\gamma = 1.01 \pm 0.21$ FP2: $\gamma = 0.98 \pm 0.35$ **neutron/proton** FP1: $\gamma = 0.99 \pm 0.28$ FP2: $\gamma = 0.85 \pm 0.47$ **adopted:** $\gamma = 0.9 \pm 0.4$

neutron/hydrogen squeeze-out ratio, UrQMD: P. Russotto et al., PLB 697, 471 (2011)

summary

 $L=3\rho_0\cdot\partial E_{sym}/\partial \rho$

IAS

HIC

PDR

isobaric analog states Danielewicz/Lee 2008

heavy-ion collisions isospin diffusion, n/p ratios Tsang et al., 2009 pygmy dipole resonance Klimkiewicz et al. 2007

from elliptic n/p flow

Dipole Response in ²⁰⁸Pb" Tamii et al., arXiv:1104.5431

symmetry pressure $P_0 = (L/3)\rho_0$

 $S_0 = E_{sym}(\rho_0)$

from M.B. Tsang et al., PRL 102, 122701 (2009) vertical lines: analyses with ImQMD (Zhang et al.) and IBUU04 (Li and Chen)